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ABSTRACT
The co-location of memory and processing is a core principle of neuromorphic computing. A local memory device for synaptic weight storage
has long been recognized as an enabling element for large-scale, high-performance neuromorphic hardware. In this work, we demonstrate
programmable superconducting synapses with integrated memories for use in superconducting optoelectronic neural systems. Superconduct-
ing nanowire single-photon detectors and Josephson junctions are combined into programmable synaptic circuits that exhibit single-photon
sensitivity, memory cells with more than 400 internal states, leaky integration of input spike events, and 0.4 fJ programming energies (includ-
ing cooling power). These results are attractive for implementing a variety of supervised and unsupervised learning algorithms and lay the
foundation for a new hardware platform optimized for large-scale spiking network accelerators.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0204469

I. INTRODUCTION

Computing performance has been limited by the von Neu-
mann bottleneck for decades.1 These memory access challenges, in
conjunction with the rise of memory-intensive deep learning appli-
cations, have led to a reexamination of computing architecture in
recent years. Neuromorphic architectures modeled after biological
neural systems are candidates for the next generation of artificial
intelligence hardware. Computational and architectural motifs, such
as distributed analog computation, highly interconnected commu-
nication networks, and co-location of memory and information
processing, are key to the impressive performance of biological
neural systems. These principles can serve as broad guidelines for
hardware engineers.

Superconducting optoelectronic networks (SOENs) were intro-
duced to maximize scalability while adhering to such biologically
derived principles.2,3 With this hardware, high-speed, low-power
processing is performed with superconducting analog spiking neural

circuits based on Josephson junctions (JJs). These superconduct-
ing neurons are embedded in a highly interconnected optical net-
work that enables direct communication between each neuron and
thousands of downstream synapses. Spiking events are encoded as
few-photon pulses of light that are directly transmitted between an
integrated light source at each neuron and single-photon sensitive
detectors at each synaptic connection. This single-photon sensitiv-
ity manifests itself in the extreme fan-out capability of supercon-
ducting optoelectronic neurons by placing the physically minimal
performance requirements on the light sources. Direct synaptic con-
nections ensure communication latency is independent of network
scale and activity up to systems of billions of neurons.2

Synapses for SOENs were realized in Ref. 4, enabled by the
monolithic integration of superconducting-nanowire single-photon
detectors (SPDs) with JJs. While those synapses demonstrated
single-photon sensitivity and biologically relevant computations,
such as leaky integration and tunable synaptic weights, the synap-
tic weights were defined with current biases generated off-chip. The
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requirement of an independent current source for each synaptic
weight is an unscalable solution that contradicts the principle of
co-location of processing and memory.

Like other neuromorphic platforms, SOENs stand to greatly
benefit from a local, multi-state memory that can be programmed
for hardware-in-the-loop training or updated based on network
activity for on-chip learning. While room-temperature synaptic
memory technologies remain an intensely active research area cen-
tered on materials development and integration (be it memris-
tive, ferroelectric, or phase-change materials),5 suitable supercon-
ducting memories are a decades-old technology that require no
changes to standard superconducting fabrication processes.6,7 These
“superconducting loop memories” store information as circulat-
ing currents trapped in superconducting loops. With identically
zero resistance in the loop, the circulating current persists indef-
initely. Furthermore, such memories permit high bit-depths, low
programming energy, high endurance, and programming pulses
easily produced by integrated JJ circuitry.8,9 In this work, we
adapt the synapses of Ref. 4 for integration with superconducting
loop memory to demonstrate programmable single-photon sensitive
optoelectronic synapses.

II. SOEN BACKGROUND
This section serves as a brief introduction to hardware of

SOENs and the superconducting devices used in this work. Inter-
ested readers are encouraged to consult Refs. 2 and 3 for more details
and scaling analyses. Figure 1 provides a schematic of a complete
SOEN neuron.

Communication between neurons is performed in the optical
domain (wavy arrows), while computation within each neuron is
performed by superconducting analog electronics. When the sig-
nal contained within the neuron’s soma exceeds an electronically
adjustable threshold, an optical pulse is emitted by an integrated
optical transmitter (labeled T), analogous to a biological action
potential generated by an axon hillock. This optical transmitter con-
sists of a light source10 and a driving circuit.11 The optical signal
is then routed through a network of integrated photonic wave-
guides for neurons on the same chip or optical fibers for connections
between chips in larger systems.

FIG. 1. Schematic of a mature SOEN neuron. The circuit demonstrated in this work
is indicated with the red dashed box. Adapted from Ref. 2.

Each synapse is endowed with an SPD for transducing these
faint optical pulses (on the order of a few photons) into electrical
signals for further processing. The synapses are inductively coupled
to the soma, and the sign of this coupling determines if they are
excitatory (Se) or inhibitory (Si). A path toward coupling thou-
sands of these synapses to the soma using dendritic compartments
is presented in Ref. 12. Synaptic weights are maintained in super-
conducting memories contained within the circuit blocks labeled
W. These weights determine the magnitude of magnetic flux that
will be applied to the soma for each detected photon. The weight
may be updated with either electrical programming signals (black
arrow) or optical pulses from network activity (faded photonic sig-
nals). In this work, single-photon sensitive synapses are coupled
to electronically programmable superconducting memories, realiz-
ing the components highlighted with the red dashed box in Fig. 1.
For this demonstration, a pulsed laser is coupled from free space
to the synapses to mimic the optical transmitter of an upstream
neuron.

At the device level, the SPDs are superconducting nanowire
detectors, which are an increasingly mature technology that have
found wide application in recent years.13 A number of features
make them attractive for SOENs, including detection efficiencies
exceeding 98%,14 count rates approaching 1 GHz (although the
detectors used in this work have count rates around 20 MHz),15

high yield fabrication,16,17 and waveguide compatibility.18,19 Phys-
ically, the detectors are superconducting wires biased near their
critical current. When a photon is absorbed, the wire transi-
tions to a resistive state and redirects this bias through a parallel
path.

The other key device for this demonstration is the Josephson
junction.20,21 JJs are the quintessential active element in supercon-
ducting electronics, which are used in SOEN hardware to perform
a variety of bio-inspired operations, including leaky integration,
thresholding, and synaptic weighting, which is the focus of this
paper. A JJ is formed by two superconducting materials separated
by a non-superconducting barrier. If the barrier is thin enough,
superconducting current can tunnel from one side of the junc-
tion to the other. If the current through the junction exceeds a
critical value, the device switches into a voltage state. This switch-
ing can occur on the order of picoseconds, making JJs particu-
larly attractive for high-speed computation. Furthermore, Josephson
electronics are commonly used with inductive coupling due to the
interaction of magnetic fields with the superconducting wavefunc-
tion.20 This is exploited repeatedly by the circuits described in
Sec. III.

The cryogenic requirements of superconducting devices
restrict SOENs to large-scale applications where cooling overhead
will be acceptable.22 The spike-based and analog nature of the hard-
ware suggests that some of the first applications may be in temporal
processing tasks where the continuous dynamics of the circuits
prove especially useful. Possibilities include large-scale video analy-
sis and high-speed control systems. In the longer term, SOENs are
envisioned to benefit from the growing literature on bio-inspired
machine learning, including local learning algorithms and spike-
based computation.23,24 Advances in these areas would open the
technology to a more general set of applications and potentially
provide a more energy efficient and scalable future for large-scale
models.
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III. CIRCUITRY

A. Superconducting loop memory

The phenomenon of flux quantization in superconducting
loops is one of the most well-known manifestations of quantum
mechanics at the macroscale.25 The requirement that the wavefunc-
tion of the superconducting state be single valued ensures that the
magnetic flux penetrating the loop must be an integer multiple of
the magnetic flux quantum, Φ0 (2.07 × 10−15 Wb). Equivalently, it
is useful to think of the total flux as being composed of an inte-
ger number of flux quanta or fluxons, each carrying Φ0 of flux. For
an uninterrupted superconducting loop, the penetrating flux will
for all time remain the same as when superconductivity was first
established. However, if JJs are embedded in the loop, the amount
of trapped flux can be changed in increments of a single fluxon.
This is the basis of superconducting loop memory, where the num-
ber of trapped fluxons in the loop is used to define the state of the

memory cell. Trapped fluxons are associated with an induced
shielding current in the memory loop,

Imem =
NϕΦ0

Lmem
, (1)

where Nϕ is the number of stored fluxons and Lmem is the loop
inductance. This current will persist indefinitely, resulting in loop
memory’s exceptional retention times. In digital computing applica-
tions, it is common to employ a binary memory cell, representing a
zero by the absence of trapped flux and a one by the presence of a
single fluxon. In the present neural application, a many-state mem-
ory is desirable. In this work, we demonstrate three memory loops
with Nϕ = 8, 28, and 415, which we refer to as 3, 5, and 8 bit synapses,
respectively.

While there are several variations of circuitry for program-
ming the states of memory loops, we pursue the circuit in the lower
part of Fig. 2(a) for its simplicity. In this case, the memory loop is

FIG. 2. Synapse concept and simulation. (a) Circuit diagram. Current Isi is added to the integration loop (blue) each time the SPD (purple) detects a photon. The amount
of Isi produced is mediated by the synaptic SQUID (light green). A programmable memory loop (dark green and tan blocks) determines the quiescent point of the synaptic
SQUID, which establishes the synaptic weight. The voltage across the readout SQUID (Vsq) is measured as a proxy for Isi in the experiments. (b) A section of the synaptic
SQUID’s flux-voltage transfer function is shown in green. The SQUID is initially biased below threshold. When the SPD detects a photon, the flux Φspd drives the SQUID
into the active region of its response. Changing the state of the memory loop corresponds to shifting the initial flux penetrating the SQUID (Φmem). Higher values of Φmem

result in the SPD driving the SQUID further into the voltage state and more current added to the integration loop. (c) Simulation of the stored current (Imem) in a three-state
memory loop. Unless the loop is saturated, each prog1 pulse adds one fluxon to the loop and each prog2 pulse subtracts one fluxon from the loop. (d) The current Ispd
diverted away from the SPD each time a photon is detected. This waveform is determined by the optimal parameters for photon detection and is unaffected by changes to
the synaptic weight. (e) The post-synaptic integrated current (Isi) at three different weights for six photon detection events, showing the effect of the memory loop. Note that
the synaptic decay time is 30 ns in this simulation in order to present the SPD and integration loop dynamics on similar timescales. In the fabricated devices, the decay time
is 6.25 μs.
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inserted between two DC-SFQ circuit blocks. These DC-SFQ con-
verters produce exactly one fluxon or single flux quantum (SFQ)
each time the input current (Iprog1 or Iprog2) crosses a threshold
set by the DC current bias.20,25 By placing one on either side of
the memory loop, fluxons can be added or subtracted one at a time
by applying a programming pulse to the appropriate DC-SFQ con-
verter. The operation of the DC-SFQ converters is independent of
programming pulse width and largely independent of the precise
programming pulse height, as long as the pulse amplitude exceeds
the threshold set by the current bias (programming pulse height does
affect the saturation level of the memory loop as described in the
next section). The number of states available to the loop is ultimately
limited by the loop inductance, with larger inductances supporting
more states since the stored current per fluxon is inversely pro-
portional to Lmem. In the data section, we demonstrate memories
with three different inductances (154, 620 pH, and 22.5 nH designed
values) to realize the three different storage capacities.

B. Synaptic circuits
In order to couple memory loops to synapses, the previous gen-

eration of synaptic circuits4 underwent a major redesign [Fig. 2(a)].
In the new design, each synapse is based around a superconducting
quantum interference device (SQUID) connected to an integration
loop. A SQUID is a common device in superconducting electronics
in which two Josephson junctions are current-biased in parallel (in
this work, we refer specifically to the DC SQUID). The SQUID acts
as a flux to voltage transducer, where the voltage across the device
is a periodic function of the magnetic flux penetrating the loop. For
these circuits, we restrict the range of inputs so that only one period
of the response plays a role and the SQUID transfer function is a
monotonic, nonlinear function of input flux, as shown in Fig. 2(b).
The SPD is inductively coupled to the SQUID such that any pho-
ton detection event results in magnetic flux (Φspd) applied to the
SQUID. Φspd is proportional to the current Ispd and decays with a
time constant set by the detector (30 ns for this work). In this appli-
cation, we bias the SQUID below the critical current so that it is in
a state of zero voltage when no synaptic activity occurs. The flux
coupled in by the SPD must exceed a bias-dependent threshold to
activate the SQUID. When the SPD detects a photon, the SQUID will
be driven into the voltage state where it produces a series of fluxons
at a rate proportional to the voltage Vsyn. These fluxons are stored
as current Isi in the integration loop (blue). Adding a resistor to this
integration loop causes the current to decay exponentially, result-
ing in leaky integrator behavior. Isi is analogous to the post-synaptic
potential of a biological synapse and is the signal that will be fed into
the neuron cell body (or dendritic tree).

The synaptic weighting mechanism demonstrated here func-
tions by adjusting a flux bias to the synaptic SQUID. The memory
loop couples flux (Φmem) into the SQUID, acting as an offset flux
that can move the SQUID’s quiescent point closer or further from
its turn-on point. The total number of fluxons generated during the
SPD response depends on the total flux coupled in, which is the sum
of the contribution from the SPD (Φspd) and the contribution from
the memory cell (Φmem). Incoming SPD flux will then drive the
synaptic SQUID more or less strongly depending on where Φmem
is placed relative to the turn-on point of the SQUID transfer func-
tion [Fig. 2(b)]. Φmem is programmed by placing an integer number

of fluxons in the memory loop using a sequence of programming
pulses to ports prog1 and prog2.

In Figs. 2(c)–2(e), we simulate the current in various parts of
the synapse in the time domain. In Fig. 2(c), Imem is adjusted one
fluxon at a time with a series of programming pulses. Recall Imem
is inductively coupled to the SQUID and therefore proportional to
the flux offset that will ultimately determine the synaptic weight. We
simulate a memory loop with only three states to illustrate the phe-
nomenon of saturation. Saturation occurs when the memory loop
has railed at either its maximum or minimum level of current. If
one of the programming ports is pulsed repeatedly, current will be
diverted from the DC-SFQ bias and into Imem with each fluxon pro-
duced. Eventually, there is no longer enough bias current for the
DC-SFQ converter to produce a fluxon in response to the next pro-
gramming pulse, and the current in the memory loop will saturate.
We observe positive and negative saturation after the third prog1
pulse and third prog2 pulse, respectively. Memory loop saturation is
a beneficial behavior, as it is used to keep the synaptic SQUID oper-
ating in a useful range of its response. In Fig. 2(d), the SPD detects a
series of six photons. Each of these detection events results in exactly
the same amount of diverted current from the SPD, regardless of the
state of the synapse. This allows the SPD to be biased for optimal
detection efficiency at any synaptic weight and permits many SPDs
to be biased in series. In contrast, the amplitude of Isi per detected
photon is a function of the state of the memory loop and can be
programmed as desired [Fig. 2(e)]. Note the increasing amplitude
following each prog1 pulse until saturation and the opposite behav-
ior with each prog2 pulse. This work used externally generated
square programming pulses commensurate with hardware-in-the-
loop training, but similar cells could be programmed directly with
SPD pulses26 for fully on-chip learning with local algorithms, such
as spike-timing-dependent-plasticity.

IV. FABRICATION
Circuits were fabricated at the NIST Boulder Microfabrication

Facility in a 15-layer process. The full process details are described
in the Appendix of Ref. 4. The SPDs are made from MoSi and pat-
terned into 200 nm-wide meandering wires using electron-beam
lithography.27,28 We also use MoSi as a high kinetic inductance
material for the larger-valued inductors (namely, the synaptic inte-
gration inductor and the 22.5 nH 8 bit memory loop). The Joseph-
son junctions are externally shunted Nb/a-Si/Nb tri-layers29 with a
target Ic of 100 μA. PdAu resistors were used for the JJ shunts,
while Au was used for leak resistors in the synaptic integration
loop. An integration time constant of 6.25 μs was targeted for all
synapses.

A microscope image of the full 5 bit synapse is shown in
Fig. 3(a). The synaptic SQUID, SPD, and memory loop are shown in
Fig. 3(b). The synaptic SQUID uses a quadrupole configuration. This
design both mitigates the effects of background magnetic fields vary-
ing over length-scales larger than the SQUID and provides a natural
way to couple two independent input coils into the SQUID. The SPD
drives the top input coil, while the memory loop drives the bottom.
The SPD and a single DC-SFQ converter are shown in Figs. 3(c)
and 3(d). Both JJs are visible in Fig. 3(d) (circles) along with exter-
nal shunt resistors. No attempt was made to reduce the size of the
circuits for these proof-of-principle experiments. The full synapse is
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FIG. 3. Microscope images of the 5 bit synapse. (a) Full synapse. (b) Synaptic
SQUID with SPD and memory loop inputs. (c) SPD (meander at right) along with
vias and connections. (d) DC-SFQ converter for one side of the memory loop.

∼840 × 700 μm2. Similar synapses were estimated to occupy around
30 × 30 μm2 in more advanced fabrication processes.9

V. EXPERIMENTAL CHARACTERIZATION

Measurements were performed by inductively coupling the
synaptic integration loops to another SQUID, which we refer to as
the readout SQUID [Fig. 2(a)]. This allows us to measure the volt-
age across the readout SQUID (Vsq) as a proxy for Isi. We note
that Vsq is a somewhat distorted representation of Isi, particularly
when significant current is stored in the integration loop, due to the
nonlinear response of the readout SQUID. Nonetheless, this con-
venient readout mechanism allows us to measure changes in Isi at
sub-microsecond timescales and is essentially identical to how we
envision coupling these synaptic signals into dendritic and somatic
structures in future work.12,30 Vsq is amplified with a 60 dB room
temperature amplifier and recorded on a 1 GHz oscilloscope. All
plots report the amplified value of Vsq.

All measurements were performed at 2.3 K in a cryostat with
a Gifford–McMahon cryocooler. The circuits were placed inside
two concentric mu-metal shields to limit external magnetic noise.
Nine coaxial cables were used for electrical input and output, and
a single optical fiber was positioned above the test chip to flood-
illuminate the entire sample. A 780 nm laser with 480 ps pulse width
was used for optical input. The SPDs are not number-resolving
detectors (except under special circumstances), and the laser pulse
width is significantly shorter than the detector reset time (≈30 ns).
Thus, even though the optical input is not in the single photon

regime, the response of the SPD to a single laser pulse will not dif-
fer significantly from its single photon response. These responses
are explored experimentally in Ref. 17 and in the supplementary
material of Ref. 4, where we operated the previous generation of
synapses under low-light conditions and confirmed single-photon
sensitivity. Additionally, averaging was performed on all time traces
to counteract electrical noise obscuring the microvolt signals. The
number of averages is given in each figure caption. While read-
out noise inhibits the ability to test the variance of the synaptic
response, the amplitude of an averaged trace represents the mean
of the underlying probability distribution of synaptic weight.

There are two additional current bias lines not shown in
Fig. 2(a) that are used to tune the two SQUIDs. We refer to these
as the “addflux” biases. The addflux lines couple flux into the
SQUIDs to set the initial operating points [the zero flux point in
Fig. 2(b)]. These operating points were tuned by hand before mea-
surement began. In the future, on-chip magnetic shielding could
be added to ensure that all SQUIDs begin with zero flux pene-
trating the loop. Additionally, every synapse was initialized in its
lowest weight state by repeatedly pulsing the prog2 port before each
measurement.

For the first experiment, we demonstrate how the post-synaptic
response to a single optical pulse evolves with the programming his-
tory of the memory loop. In Fig. 4(a), we initially alternate between
pulsing the laser and applying programming pulses to prog1 for
the 3 bit synapse. The post-synaptic current in the synaptic integra-
tion loop is allowed to decay to zero between successive laser pulses.
We see that Vsq increases following each prog1 programming pulse
as desired. We then cease pulsing prog1 and pulse the laser three
times. As seen in Fig. 4(a), these three pulses are nearly identical in
height, confirming that the memory loop is indeed retaining its pro-
grammed state. We then begin pulsing prog2 between laser pulses
and see that the synaptic weight can be reduced one step at a time
before the memory loop saturates at its lowest level after eight pulses.
The experiment is repeated for the 5 bit (620 pH memory loop)
synapse in Fig. 4(b). We witness the same qualitative behavior as
with the 3 bit synapse, but have significantly more states. prog1
was pulsed 35 times in this experiment, although we observe that
the post-synaptic height stops changing after about 28 pulses. This is
due to the memory loop saturating at its maximum level slightly ear-
lier than the designed 32 fluxons. It similarly takes about 28 prog2
pulses to bring the synapse back to the minimal weight state, as
expected.

In Fig. 5, we demonstrate that the circuits also exhibit an inte-
grating ability inspired by biological synapses.31 If the laser is pulsed
at a high enough frequency such that Isi does not decay fully between
pulses, multiple detection events can be integrated over time. The
time constant of the leak is determined by the L/R value of the
synaptic integration loop. Although not the subject of this study,
the synaptic integration times can be engineered across at least four
orders of magnitude (hundreds of nanoseconds to several millisec-
onds), as shown in Ref. 4. Figure 5(a) shows the 3 bit synapse
responding to 15 laser pulses arriving at a 500 kHz frequency. Each
trace corresponds to a different initialization of the memory loop.
Before the laser is turned on, the memory loop is given a fixed num-
ber of prog1 pulses (0–10 in this case). We observe the synaptic
response growing with each additional programming pulse until sat-
uration at 8 pulses (the 8, 9, and 10 programming pulse traces are
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FIG. 4. Synaptic response to individual laser pulses evolving with programming history. (a) 3 bit synapse. The alternating sequence of programming and laser pulses is
shown in the top plot, while measured Vsq data are shown in the bottom plot. Note how the three Vsq responses following the last prog1 pulse maintain approximately the
same peak value when no additional programming pulses are generated. (b) 5 bit synapse. The post-synaptic response rises with each prog1 pulse until the memory loop
is saturated after about 28 pulses. The Vsq traces in both (a) and (b) are averaged 1000 times.

on top of each other). This experiment was repeated with a laser
pulse frequency of 1.1 MHz (b), where we observe a higher synaptic
response for each programming condition than in (a), as expected
from the leaky integrator.

In Figs. 5(c) and 5(d), the synaptic response is plotted as a func-
tion of the rate of incoming laser pulses (c) and the number of laser
pulses in an input pulse train (d). In Fig. 5(c), the number of laser
pulses is fixed at 100, but the frequency of those input pulses is swept
from 100 kHz to 10 MHz. Each data point corresponds to the peak
value of the synaptic response under those conditions [i.e., the peak
value of a single trace of the type in (a) and (b)]. Once again, each
curve corresponds to a different weight initialization (0–10 prog1
pulses). The demonstrated sensitivity to frequency is of particular
interest in burst- and rate-coded applications. The complimentary
measurement is represented in Fig. 5(d), where the frequency of
laser pulses is fixed at 10 MHz, but the number of pulses is varied
from 1 to 100. The eventual leveling off is characteristic of a leaky

integrator reaching steady-state for sufficiently long pulse trains. In
both (c) and (d), the ability of the memory loop to tune the synaptic
response curve is evident. Figures 5(e)–5(h) show the same data for
the 5 bit synapse. In these plots, the number of prog1 pulses is var-
ied between 0 and 35 pulses. In (e) and (f), all 35 curves are plotted,
but every fifth trace is shown with a darker line stroke for clarity. We
see qualitatively similar data to the 3 bit case, but with much higher
synaptic weight resolution, as expected.

The synapses presented here benefit from the ability of the DC-
SFQ programming circuits to operate at timescales shorter than the
synaptic integration dynamics. All experiments utilized program-
ming pulse widths on the order of 100 ns. This is significantly shorter
than the 6.25 μs synaptic integration time and allows the synaptic
weight to be changed dynamically, even while the synapse contains
signal in its integration loop. This is illustrated in Fig. 6 for the
3 bit synapse. The laser is pulsed with a frequency of 700 kHz. A
series of programming pulses are input into the memory loop, and
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FIG. 5. Integrating ability for the 3 (a)–(d) and 5 (e)–(h) bit synapses. (a) Response to 15 laser pulses arriving at 500 kHz. Each trace corresponds to a different number of
programming pulses sent into the memory loop at the beginning of the measurement. 500 averages. (b) Same as (a) except that the laser pulse rate is increased to 1.1 MHz.
(c) Laser pulse frequency transfer function. The peak value of Vsq is plotted for different frequencies of optical pulses. The pulse number is fixed at 100 pulses. 200 averages.
(d) Laser pulse number transfer function. The peak value of Vsq is plotted for numbers of optical pulses. The pulse frequency is fixed at 10 MHz. 200 averages. (e)–(h)
Repetition of these plots for the 5 bit synapse. In (e) and (f), every fifth trace is bolded for clarity.

FIG. 6. Dynamically changing the synaptic weight of the 3 bit synapse while the synapse continues to receive and integrate signal. 500 averages. There is no observable
cross-talk from the programming signals on the integrated synaptic current, allowing synaptic weights to be changed “on-the-fly.”
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we see the synaptic weight changing with every programming pulse
(unless the loop is already saturated, as exhibited by the second and
third prog2 pulses). There is no observable cross-talk between the
programming pulses and the integrated current, as the integration
loop is isolated from the memory circuitry by the synaptic SQUID.

This ability to change the weight dynamically is promising for future
implementations of short term plasticity and homeostatic mecha-
nisms. Furthermore, memory updates can be completed in less time
than the minimum inter-spike interval expected in SOEN hardware
(≈30 ns). Future implementations of on-chip learning in a network

FIG. 7. 8 bit device. (a) Alternating between laser and programming pulses, analogous to Fig. 4. Zoom-ins below resolve individual programming pulses and synaptic
responses. Laser pulses are omitted for clarity. The prog1 port is driven 500 times. 2500 averages. (b) Top: Peak Vsq as a function of the net number of programming pulses
(Nprog1 − Nprog2) applied to the memory loop. Green points are derived from the peaks while prog1 is pulsed, while red points are derived from pulsing prog2 following
500 prog1 pulses. Bottom: Same as above, except that the red curve is shifted 85 pulses left. We see that the rising path and falling path are nearly symmetric. The 85 pulse
offset implies that the last 85 prog1 pulses occurred after the memory loop reached saturation and that there are ∼415 states in the memory loop. (c) Response to a single
laser pulse following different initializations of the memory loop (0–500 prog1 pulses). The 0, 100, 200, 300, and 400 pulse traces are bolded for clarity. 1000 averages. (d)
Same as (c) except responding to a pulse train of 10 laser pulses at 700 kHz.
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are therefore unlikely to ever be a bottleneck, even in the extreme
case of a weight update after every synaptic event.

In Fig. 7, we present the results of the synapse coupled to the
largest memory loop (≈22.5 nH). We refer to this as the 8 bit loop,
although we estimate that there are actually over 400 internal states.
In the post-synaptic response, the difference between adjacent states
is less than the noise floor of our measurement, but we can dis-
cern the same qualitative behavior as in the 3 and 5 bit variants.
In Fig. 7(a), we perform the same experiment as Fig. 4, alternat-
ing between individual laser and programming pulses. We pulse the
potentiating port 500 times before reducing the synaptic weight back
to zero. Zoomed-in portions show the synaptic weight increasing
with the prog1 pulses, remaining constant without any program-
ming signals, and decreasing with prog2 pulses. In Fig. 7(b), we plot
the peak values of Vsq in part (a) following each laser pulse as a func-
tion of the net number of programming pulses, Nprog1 −Nprog2. We
break the plot into two parts: a green rising curve resulting from
the region of prog1 pulses and a red decreasing curve from the
later region of prog2 pulses. These two curves are nearly symmetric,
but shifted by 85 pulses as shown in the bottom panel of Fig. 7(b).
The symmetry between the curves is consistent with proper DC-SFQ
operation and suggests that both programming ports are operating
correctly. The 85-pulse offset between the two curves implies that 85
of the prog1 pulses came after the memory loop had already reached
saturation. This allows us to estimate that the memory loop has a
capacity of ∼500 − 85 = 415 states or 8.7 bits. This is also in visual
agreement with the apparent flattening of the green curve after about
415 prog1 pulses. The slight upward slope in the region between
415 and 500 pulses is likely due to a small amount of integration of
multiple laser pulses occurring at high synaptic weights. Figures 7(c)
and 7(d) show the synapse responding to a single laser pulse and a
700 kHz train of 10 laser pulses, respectively. While noise obscures
the small differences between states, the behavior is as expected.

To quantify the volatility of the memory storage mechanism,
the retention of one of the synapses was measured over a period of
48 h. In principle, the current stored in the memory loops should
remain unchanged for as long as the circuit remains below the super-
conducting transition temperature. We test this on the 3 bit synapse
by first taking two reference traces with one and three prog1 pulses.
We then re-initialize the synapse with two prog1 pulses. No other
programming pulses were applied for the rest of the experiment. The
synapse was driven once an hour with bursts of 15 laser pulses at a
frequency of 700 kHz. Once again, averaging was required to reduce
readout noise. 500 such bursts were applied (5 kHz burst frequency)
and averaged to accurately measure the synaptic weight at each hour.
The results are represented in Fig. 8(a). The two gray traces corre-
spond to the Nprog1 = 1 and Nprog1 = 3 responses at the beginning of
the experiment. There is no visible difference in the response over
time, and it never comes close to approaching either of the two
adjacent states. In Fig. 8(b), we plot the χ2 value of each trace as a
function of time after programming. The following equation is used
to calculate the statistic:

χ2(T) =

Np

∑
n=1
(Vsq,T(n) − Vsq (n))2

Np

∑
n=1

Vsq(n)2
, (2)

FIG. 8. Stability of the 3 bit synapse. (a) The gray traces correspond to the Nprog1
= 1 and Nprog1 = 3 states at the beginning of measurement period. All other traces
correspond to the Nprog1 = 2 state each taken one hour apart after a single initial-
ization. 500 averages. (b) χ2 value [Eq. (2)] of each trace as a function of time after
initialization.

where Vsq,T(n) is the value of the nth point in the trace taken T
hours after programming, Np is the number of data points in each
trace, and Vsq is the average of all 49 traces. There is no discernible
trend over the 48 h measurement period, and we expect that much
longer retention times are possible. As a point of reference, we
anticipate superconducting optoelectronic neurons to achieve spik-
ing rates beyond 20 MHz. Maximum spike rates in the brain are
about 1 kHz (for chattering neurons; most pyramidal neurons do not
exceed gamma bursts of 80 Hz). Using 20 MHz/1 kHz as a scale fac-
tor, 48 h of stable memory in this hardware is roughly commensurate
with 110 years of human brain activity.
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VI. DISCUSSION

We have demonstrated programmable superconducting single-
photon optoelectronic synapses coupled to memory cells with over
400 states. For comparison, Intel’s state-of-the-art digital neuromor-
phic chip Loihi uses 9-bit precision.32 The programming energy
for our synapses is ∼2Φ0Ic ≈ 0.4 aJ. Accounting for cooling would
inflate this to around 0.4 fJ. Assuming 1% light-source efficiency,
each presynaptic photon will require about 13 fJ of energy. Program-
ming energies are therefore unlikely to be a major contributor to
the SOEN energy budget. Additionally, since the switching speeds
of Josephson junctions (≈10 ps) are far faster than the reset times
of the detectors (≈30 ns), these synapses lend themselves to exper-
imentation with sophisticated bio-inspired “always-on” plasticity
mechanisms that would be too costly (in terms of either energy or
time) for other systems.

While loop memory has many attractive features, it has long
been considered a weakness of superconducting digital computing
due to its low area density.33 This is a fair criticism in the digital
computing space, but much less so in SOEN neuromorphic hard-
ware. Since every synapse already requires a SQUID, the addition of
the memory loop is not a major contribution to the total area. While
no effort was made to reduce the area in this work, scaling analyses
suggest that a single SOEN synapse with integrated memory should
be realizable within a 30 × 30 μm2 area in more advanced fabrica-
tion processes where the different components fabricated here are
stacked on top of each other.9 There is little motivation to shrink
this area further due to the size of passive photonic components on
other fabrication layers. Over one million neurons and one billion
synapses embedded in a network with a biologically realistic aver-
age path length can still be expected to fit on a 300 mm wafer.9
An added advantage of superconducting electronics is that both the
active computational elements (JJs) and the photon detectors (SPDs)
can be monolithically fabricated on multiple layers.34–36 Similar
multi-layered fabrication of CMOS or semiconductor photodetec-
tors is difficult due to the requirement of high-temperature steps for
dopant activation, which cannot be performed after metal intercon-
nects have been deposited. While it is conceivable (although not at all
obvious) that neuromorphic hardware of similar complexity based
on silicon microelectronics could be more dense, the overall system
scalability is far more limited due to communication bottlenecks.
Furthermore, superconducting loop memory outperforms emerg-
ing memristive technologies in many other metrics. While there
is a wide range in reported performance of memristive devices,37

programming energies are typically on the order 100 fJ/bit (more
than two orders of magnitude greater than superconducting loop
memory), write times are around 10 ns (three orders of magnitude
slower than superconducting memories), less than 6 bit precision
is typical,38 and there are ongoing efforts to improve endurance
and variability. Improved performance can be gained through more
sophisticated programming protocols,39 but the programming time
and cost of such schemes are best-suited for inference applica-
tions rather than large-scale training or online learning systems.
Thus, where superconducting digital computing is weak relative to
semiconductors with regard to memory, it appears to be strong in
the domain of neural memory.

Although the demonstrated synapses are a marked improve-
ment over the previous generation, there are several areas that

require further research. First, future work with on-chip magnetic
shielding and a cryostat with improved isolation could better eluci-
date the limits of bit precision in the devices. For now, noise makes
it difficult to assess how well adjacent synaptic weights are sepa-
rated in the Isi domain. However, we note that the present devices
are operated with a thermal noise parameter of Γ = (2πkT)/(Φ0Ic)
≈ 9 × 10−4, suggesting that the observed noise is not thermal in ori-
gin and likely external to the circuits.21 Second, there was no effort in
this work to linearize the synaptic weighting. While the quantization
of magnetic flux ensures that the stored current in each memory cell
is nearly linear with its programming history, the amount of current
added to the integration loop per detected photon is a function of the
SQUID response, which is nonlinear. However, there has long been
interest in improving the linearity of SQUID responses for sensing
applications, and only slightly more complicated three-JJ SQUID
designs have shown nearly linear responses.40 It may also be possible
to design learning protocols where the nonlinearity does not pose an
issue. Third, there is the key question of volatility. Superconduct-
ing loop memories do not require any power to maintain their state.
Indeed, all the current biases to these synapses can be toggled off
and on and the synapse will come back online in its previously pro-
grammed state. However, the temperature must remain below the
critical temperature (Tc) of the superconducting materials (∼9 K)
or all information will be lost. There will likely be maintenance sit-
uations or power failures where the system must be warmed above
Tc, and the ability to store the synaptic weights at room temperature
would be beneficial. One possibility is to have a readout mechanism
at every memory cell that could be used to measure the state of each
memory cell and save this information digitally. The weight matrix
could then be re-uploaded into the network once the system is cold
again.

Local, programmable synaptic memory opens up a wide vari-
ety of potential applications. The present synapses could be useful in
non-cognitive applications of spiking networks wherein a weight-
adjacency matrix representing a specific problem is programmed
into the network during an initialization phase. The network behav-
ior is then allowed to evolve in time, with the resulting network
dynamics encoding the solution to the problem. This scheme has
been used to solve optimization problems and systems of differential
equations.41 In terms of artificial intelligence, the present synapses
are already well-suited for inference applications utilizing a matrix
of pre-learned weights. They are also amenable to hardware-in-the-
loop training, in which a standard digital computer generates the
appropriate programming pulses from observing the network’s out-
put and internal variables. While such training could be performed
at a small scale with memory-less synapses, this scheme would
require an independent current bias for every weight in the network,
which is infeasible for large systems due to the heat load incurred
by electrical lines. In contrast, these programmable synapses could
be interfaced with cryo-CMOS control circuitry and an address-
ing system for large-scale programming using a limited number
of lines between the cryostat and room temperature. The ultimate
goal, however, is to remove the digital computer from the training
loop. This will require the development of learning algorithms and
plasticity circuits to update the synaptic memories using primarily
local information.

We have developed a simulation framework for SOEN hard-
ware42 and recently simulated a neural network utilizing this synapse
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design to solve a nine-pixel image classification problem.43 That
work employed a locally competitive architecture and introduced
a learning rule that uses the signals stored in the synaptic integra-
tion loops along with a global error signal to update inductively
coupled superconducting memory cells, such as those demonstrated
here. Additionally, plasticity circuits implementing a spike-timing-
dependent plasticity update rule with very similar memory elements
were presented in Ref. 2. Such plasticity circuits must receive opti-
cal, rather electrical inputs, since the native spiking behavior in
SOENs is performed in the optical domain. The single-photon-
to-single-fluxon converters presented in Ref. 26 are an impor-
tant step in this direction and can be considered optically pro-
grammable memory cells in their own right. Future work will focus
on developing these plasticity circuits, investigating more sophis-
ticated dendritic processing,30 and demonstrating full supercon-
ducting optoelectronic neurons by integrating these synapses with
on-chip light sources and passive integrated-photonic interconnec-
tion networks.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details about the
experimental setup, tests of the DC-SFQ converters, and further
characterization of the synaptic responses.
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